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Abstract

We propose “DUal-NET”, a novel transformer-based model for en-
hancing speech capture through bone conduction headsets in human-
centered sensing systems. As wearable bone-conduction devices
become increasingly important for continuous health monitoring and
ambient computing, they face a unique challenge: bone-conduction
microphones can receive significant interference from speakers play-
ing audio to the user, this occurs because the headset is directly
in contact with the skull and induces vibrations similar to human
speech, much like a user speaking, degrading speech recognition
accuracy and communication quality. Existing state-of-art speech
enhancement and sound source separation methods are ‘blind’ and
assume that the interference noise is not available due to the inherent
difficulty in observing clean correlated noise. By contrast, headsets
have full knowledge of the sounds they play through their speakers,
and DUal-NET takes advantage of this raw signal in its denoising
process. We demonstrate that DUal-NET can significantly improve
standard speech quality metrics over existing state-of-art methods in
realistic scenarios (PESQ: 135%, STOI: 50%, LSD: 66%), enabling
more accurate speech sensing for human-centered applications in-
cluding health monitoring, personalized assistants, and augmented
communication.
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1 Introduction

With the rapid progression of intelligent wearable systems and the
increasing emphasis on enhancing human well-being through tech-
nology, there is a growing demand for sensing technologies that
can reliably capture human speech in diverse environments. Speech
serves as a fundamental input modality for human-centered cyber-
physical systems, enabling applications from health monitoring and
activity recognition to personalized assistants and augmented com-
munication.

The most common way to capture speech is through over-the-air
(OTA) microphones, which convert changes in air pressure into elec-
trical signals. While OTA microphones are widely used in devices
such as earbuds and headphones, they are inherently susceptible to
ambient noise. This sensitivity to ambient noise can significantly
reduce the clarity and quality of captured speech, creating challenges
in maintaining high-fidelity voice communications and command
recognition in noisy environments [28].

To mitigate the limitations of OTA microphones’ susceptibility
to ambient noise, recent works have explored the use of bone con-
duction microphones (BCMs) and other vibration-based sensors for
speech capture [8, 12, 22]. Unlike OTA microphones, BCMs are
in direct contact with the head, making them highly sensitive to
vibrations from the skull while speaking. This direct contact gives
BCMs natural resilience to ambient noise. Additionally, vibration-
based sensors such as accelerometers (ACCEL) have been explored
to detect speech [9, 13] and facial movements for critical applica-
tions such as authentication [21]. The inherent robustness of bone
conduction sensing methods to ambient noise provides a significant
advantage over traditional OTA microphones [26].

While the implementation of BCMs or ACCELSs can substan-
tially mitigate the influence of environmental noise, the internal
sounds produced by headphones, earbuds, and bone-conduction
speakers can still induce vibrations in facial skin and bones that the
BCM or ACCEL can sense. For instance, during virtual meetings, a
BCM-equipped user may inadvertently capture not only their own
voice but also the voices of other participants emanating from their
headphones. This scenario can result in the concurrent recording of
multiple voices, thereby affecting the integrity of captured speech
[27]. This work focuses on removing vibration-induced noise in
BCMs caused by (bone-conduction) speakers in headset wearables,
as shown in Figure 1.
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Figure 1: Left - We focus on eliminating interference from head-
set (bone-conduction) speakers in bone-conduction microphones.
Right - We propose a novel deep learning based denoising ar-
chitecture that, unlike existing sound source separation works,
takes advantage of the headset’s complete knowledge of the
sound it plays through its speaker.

There have been many works that explore denoising, sound source
separation, and speech enhancement methods to separate speech
from background noise [1, 2, 6, 11, 14, 15, 19, 23, 25]. A common
characteristic of these methods is their operation under the constraint
of unknown noise signals, due to the inherent difficulty in capturing
environmental noise accurately. In other words, these approaches
typically only receive the noisy speech signal as input.

In this work, we take advantage of the fact that while speakers
on the headset may induce bone and skin vibrations that interfere
with BCM-recorded speech, the headset has complete knowledge of
the sound it plays through the speaker. We propose DUal-NET, a
novel transformer-based U-Net architecture that adaptively removes
interference from (bone-conduction) speakers in bone-conduction
speech. Unlike existing deep learning-based blind source separation
works, DUal-NET leverages clean noise played through the headset
to aid in removing interference observed in bone-conduction speech.
This is similar to traditional signal processing-based adaptive fil-
tering methods, such as least means squares (LMS) filtering, that
attempt to find filter coefficients that minimize the error between the
observed and desired signals. However, we demonstrate that DUal-
NET can achieve up to a 79% improvement over these traditional
adaptive filtering methods. Moreover, by incorporating knowledge
of the interfering noise from the headset, DUal-NET achieves up to
a 32% improvement over state-of-art deep learning-based denoising
architectures. Our contributions are summarized as follows.

e We propose DUal-NET, a novel transformer-based U-Net
architecture that denoises bone-conduction speech by taking
advantage of the headset’s knowledge of the interfering noise.

e We demonstrate that DUal-NET outperforms traditional adap-
tive filtering methods by up to 79% and state-of-art deep
learning denoising architectures by up to 32%.

o We open-source all code, designs, and datasets'.

2 Method

Figure 2 illustrates our denoising architecture. Inspired by TUNet[18],
our architecture employs an enhanced U-Net framework, incorpo-
rating TFiLM in both the downsampling and upsampling layers,

Thttps://github.com/IMEC-Northwestern/DUal-NET
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Figure 2: Model Architecture. DUal-NET takes advantage of
the additional raw noise that is being played and accessible to
headsets to improve denoising.

and utilizing an improved version of the Transformer, Performer, in
the narrow bottleneck layer. To enable our model to simultaneously
process both the noise and the noisy speech signals, we modify the
downsampling procedure. Specifically, we perform separate down-
sampling for the noise and the noisy speech signals, then merge
the corresponding downsampled layers. This merged information
is subsequently used for inference, allowing for a more effective
separation of speech from background noise.

2.1 Down-Sampling Block

Our model comprises a total of three layers, each containing two
downsampling blocks. Each downsampling block includes a 1D
convolutional layer that feeds into a layer of LeakyReLU activa-
tions, similar to other U-Net models. Downsampling block layers
b=1,2,3 contains 25? convolutional filters and a stride of 4, with
convolution kernel sizes of 66, 18, and 8 respectively. Temporal
Feature-Wise Linear Modulation (TFiLM) has been used to aid con-
volutional layers in grasping long-range dependencies. Acting as a
normalization layer, TFiLM fuses max pooling and Long Short-Term
Memory (LSTM) networks. The max pooling operation segments
the temporal dimension into small parts, while the LSTMS capture
extended dependencies.

To merge the corresponding downsampled layers, we employ a
method akin to residual connections. However, instead of adding
the noisy speech signal to the noise signal, we subtract the noise
signal from the noisy speech signal. This subtraction yields the
merged downsampled layer information, which is then utilized in
the subsequent inference process.

2.2 Bottleneck

We integrate the Transformer architecture into the bottleneck of our
U-Net structure. We posit that leveraging the Transformer architec-
ture can significantly enhance the model’s ability to capture global
contextual information, thereby improving the overall understand-
ing of the global features. Moreover, the bottleneck layer in the
U-Net structure, characterized by the smallest feature maps and the
most concentrated information, is also the layer most susceptible to
detail loss. By incorporating the Transformer, we aim to mitigate
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this information loss and thus boost the overall performance of the
model.

However, integrating the Transformer does introduce additional
complexity and computational overhead. To address this, we opt for
the improved version of the Transformer architecture, Performer,
which is particularly advantageous due to its linear time complexity
self-attention mechanism. This choice allows us to harness the bene-
fits of the Transformer while maintaining computational efficiency.

2.3 Up-Sampling Block

As with the downsampling blocks, our model also comprises three
upsampling blocks, each of which performs Transposed Convolu-
tional Layer, LeakyReLU, dropout, and TFiLM. The upsampling
block preceding the final output only performs Transposed Convolu-
tional Layer.

Upsampling blocks contain transposed convolution filters of size
128, 64, and 1, with a stride of 4. The convolution kernel sizes of
each convolution layer are 8, 18, and 66, respectively.

3 Evaluation

3.1 Synthesized Noisy Speech Dataset

We utilize the VCTK dataset [29], which comprises 44 hours of clean
speech from 109 native English speakers. To create noisy speech
files, we sourced royalty-free music of equivalent duration from
YouTube and manually mixed these tracks with the VCTK dataset,
resulting in a total of 44 hours of mixed audio. The average signal-
to-noise ratio (SNR) of the synthesized noisy speech is -13.19dB,
and the average short-time objective intelligibility (STOI) score is
0.3884.

3.2 Real-World Dataset

Similar to the previous scenario, we utilized the VCTK dataset for
speech data and royalty-free music for noise. We employed an OTA
speaker to simulate a human face. To replicate typical headset us-
age, we attached a bone-conduction speaker and microphone to the
OTA speaker, as shown in Figure 3. VCTK speech data was played
through the OTA speaker, while royalty-free music was transmit-
ted via the bone-conduction speaker. We recorded approximately 9
hours of noisy speech data across four distinct noise volume levels,
corresponding to SNRs of -57.17 dB, -21.42 dB, -17.69 dB, and
-13.09 dB, and the average STOI score is 0.6397.

3.3 Preprocessing and Training

For training and validation, we divided the dataset into training and
validation sets using a 9:1 ratio for all models requiring training.
This ensures a robust evaluation while maintaining sufficient data
for training the models effectively. Training data was divided into
smaller segments with a window size of 512ms and 50% overlap.
For all other methods, we applied the preprocessing steps mentioned
in the respective papers.

For the synthesized noisy speech dataset, we train the models for
800 epochs. For the real-world dataset, due to the reduced size of
the training dataset, we train the models for 30 epochs. After these
time periods, we notice that the training, testing, and validation loss
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Figure 3: Real-world dataset capture setup.

change very little. We trained all other methods using their default
training parameters specified in their respective papers and codes.

3.4 Loss Function

In our study, we observed that employing mean squared error (MSE)
as the loss function resulted in audio quality that was inferior to
that produced by mean absolute error (MAE). Consequently, we
opted for MAE as our primary loss function. Nonetheless, relying on
MAE or any sample-by-sample distance metric, such as MSE, does
not inherently ensure perceptual quality [17]. Therefore, we also
integrated a multi-resolution STFT loss [30]. We utilized the same
multi-resolution STFT loss parameters as outlined in [4, 16]: FFT
bins set to € {512,1024,2048}, hop lengths of € {50,120,240},
and window sizes of € {240,600, 1200}.

3.5 Performance Metrics

Perceptual Evaluation of Speech Quality (PESQ). In the
context of denoising, PESQ [20] serves as an objective measurement
to evaluate the quality of denoised speech signals as perceived by
human listeners. This metric compares the generated audio against
a high-quality reference, with scores typically ranging from -0.5 to
4.5. A higher PESQ score indicates a closer distance to the original
audio’s quality.

Short-Time Objective Intelligibility (STOI). STOI [24] com-
pares the clarity and intelligibility of speech enhanced from a lower
to a higher resolution against a clean reference, with scores ranging
from O to 1. A higher STOI score, closer to 1, signifies better intelli-
gibility, indicating that the enhanced speech is easier to understand.

Log-Spectral Distance (LSD). This metric measures the dis-
tance between the spectrum of the generated speech and the clean
speech on the log scale. The difference is measured in the log spectra
because human hearing follows this scale [7]. Scores are calculated
over all frequency bins, with lower values indicating a closer match
to the reference spectrum.



HumanSys '25, May 6-9, 2025, Irvine, CA, USA

PESQ STOI LSD
LMS 1.2390 0.2596 3.3878
DCUNet-10 1.3852 0.5703 1.6150
DCUNet-20 1.5641 0.6329 1.4197
DCCRNet 1.4034 0.5718 1.5493
DUal-NET 3.6827 0.9535 0.4802

Table 1: Evaluation on synthesized noisy speech

PESQ STOI LSD

LMS 1.2338 0.2914 4.9009
DCUNet-10 1.4620 0.7608 1.7883
DCUNet-20 1.6878 0.8150 1.5189
DCCRNet 1.7798 0.8199 1.5198
DUal-NET 1.7489 0.8343 1.0268

Table 2: Evaluation on recorded BCM Noisy Speech

1 T 1 K A 2
LSDx,y= — — logXt,k—logXt, k
Y Tt:l\/Kk:I(Og ’ 0gX1.)

Xt,k denotes the magnitude spectrum of the original signal at time
frame 7 and frequency k. Xz, k represents the magnitude spectrum of
the super-resolved signal at the same time frame and frequency. T
indicates the total number of time frames, and K is the total number
of frequency bins.

3.6 Models Compared

e [east Mean Squares (LMS) [5] is an adaptive filtering algo-
rithm designed to adapt to non-stationary signal environments
by minimizing the mean square error between the output sig-
nal and the desired signal.

e DCUNet [3] is a state-of-art deep learning U-Net architec-
ture that operates on the short-time frequency domain of
noisy speech, without methods to leverage correlated noise
while denoising speech. We leverage two versions: the smaller
DCUNet-10 and the larger DCUNet-20.

e DCCRNet [10] is an advanced speech enhancement model
that integrates a Densely-Connected Convolutional Recurrent
Network (DCCRN) with a Correlated Noise Reduction (CNR)
module to suppress both stationary and non-stationary noise
in speech signals. The DCCRN component learns spectral-
temporal features, while the CNR module leverages the corre-
lation between noise components to further improve denois-
ing performance.

DCUNet and DCCRNet are both single input denoising architectures
that only take noisy signals as input.

3.7 Performance

Summary. Tables 1 and 2 summarize the testing performance of
all methods on the synthesized dataset and the real-world dataset.

Yueyuan Sui, Minghui Zhao, Junxi Xia, Yiting Zhang, Xiaofan Jiang, and Stephen Xia
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Model Size | Inference Time | Memory Usage
DCUNet-10 1.42M 2.64ms 5.42 MB
DCUNet-20 3.52M 5.36ms 13.46 MB
DCCRNet 3.6TM 6.87ms 14.00 MB
DUal-NET 1.65M 3.15ms 6.31 MB

Table 3: Model Resource Usage Evaluation

On the synthesized dataset, our approach (highlighted) demonstrates
the best performance across all metrics. On the real-world dataset,
DUal-NET outperforms all methods on all metrics except for DC-
CRNet, which only slightly outperforms DUal-NET in PESQ, which
evaluates sound quality rather than intelligibility. DUal-NET has a
higher STOI score, indicating that the intelligibility of the denoised
speech is higher than that of DCCRNet. Additionally, DUal-NET
significantly reduces the LSD, which means it is able to more accu-
rately restore the speech spectrum, reducing signal distortion. Thus,
DUal-NET still largely outperforms DCCRNet in terms of overall
speech quality. This demonstrates that incorporating knowledge of
the noise into the denoising process can greatly improve speech
enhancement and denoising. Moreover, our transformer-based ar-
chitecture outperforms traditional signal processing based methods,
such as LMS, that also incorporate knowledge of the noise into the
denoising process.

Model Size and Inference Time. We compared the model re-
source usage of four models on an NVIDIA L40 GPU using a 512ms
window. As shown in Table 3, only DCUNet-10 has a slightly smaller
model size and latency than DUal-NET, while DUal-NET generates
significantly more intelligible and higher quality speech. DCCR-
Net, the model that generated speech with the most similar quality
to DUal-NET, sees more than twice the memory usage and infer-
ence time as DUal-NET.These results demonstrate that DUal-NET
achieves a balance between model complexity and computational
efficiency, with an inference time comparable to state-of-the-art deep
learning U-Net models.

Performance Gap. We observe that DUal-NET exhibits a perfor-
mance gap between the synthesized and real-world datasets. This
discrepancy is due to two key factors.

First, it is difficult to collect a dataset with sounds mixed non-
artificially in the real world, which is a challenge for all sound source
separation works. It is not possible to obtain ground truth for sound
sources mixed in the air. As such, all source separation works collect
clean sources, used as ground truth, and artificially mix them to use
as model inputs. In our scenario, the noise source is being played
through a bone conduction speaker, which in theory should not
propagate very far in the air and impact the ground truth collected
by the over-the-air microphone (highlighted in green in Figure 3).
However, we found that significant amounts of residual noise still
can be heard on the ground truth recordings.

Second, the transfer function caused by the impact of the skin and
bones on the noise propagating from the bone conduction speaker to
the bone conduction microphone is more complex than what we can
explicitly model. As such, the transfer function between the speaker
and microphone is easier for DUal-NET to learn and account for
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in the synthesized scenario. On the real-world dataset, DUal-NET
sees a much greater performance drop compared to other methods
because, unlike other state-of-art deep learning methods, DUal-NET
directly uses the raw noise for denoising. However, DUal-NET still
provides significant speech quality improvements with greater effi-
ciency (smaller model size and latency) by exploiting knowledge of
the noise that is present aboard headphones and earphones.

One qualitative observation we noticed is that all methods, in-
cluding DUal-NET removed a significant portion of speech on the
real-world dataset, as speech and music often overlap in frequency.
We plan to explore architectural improvements to address this com-
monplace problem in future work.

4 Conclusion

We present DUal-NET, a transformer U-Net model for denois-
ing bone-conduction speech from interfering noises from a head-
set’s speakers. Unlike state-of-art speech enhancement architectures,
DUal-NET takes advantage of the headset’s access to the raw interfer-
ence signal to improve denoising. We demonstrate that incorporating
this knowledge can improve performance by up to 32% in realistic
scenarios.

In future work, we plan to validate our method on bone-conduction
headsets collected on real humans. While we achieved significant
improvements in removing interference, a significant portion of
user speech was attenuated, which is common in many adaptive
filtering methods. As such, we plan to explore further architectural
improvements to preserve user speech while removing interference.
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