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Abstract

We are far from the full adoption of smart home technologies, let
alone realizing truly intelligent homes. There are many barriers pre-
venting homeowners from fully adopting smart home technologies,
chief among them being their low perceived usefulness (PU) and
perceived ease of use (PEoU). Current smart home ecosystems and
frameworks only support simple triggers and require homeowners to
specify step-by-step logic or purchase new devices to automate new
tasks, which severely limits the PU and PEoU of these technologies.
We propose DomAlIn, a smart home platform that automatically
generates, programs, and deploys logic to satisfy a wide range of
home-based tasks based on available devices in the home environ-
ment, without requiring users to manually “program” any logic. We
demonstrate through real deployments and user studies that by in-
corporating DomAln, a platform that reduces the need for users to
program logic, we can significantly improve a variety of factors that
affect PU and PEoU, such as customizability and complexity, by up
to 38%, as well as satisfy a diverse range of tasks in home scenarios.

CCS Concepts

* Human-centered computing — Ubiquitous and mobile comput-
ing systems and tools; * Computing methodologies — Artificial
intelligence; » Computer systems organization — Embedded and
cyber-physical systems.
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1 Introduction

Around 70% of U.S. homes now have at least one smart device [11],
and the market is projected to reach $182 billion by 2025 [5]. Yet,
widespread adoption remains elusive [7].

Two key barriers are low perceived usefulness (PU) and perceived
ease of use (PEoU) [13]. PU depends on how well devices can be
customized to user needs, while PEoU is limited by device interoper-
ability and setup complexity. Existing ecosystems such as IFTTT [8],
Amazon Alexa [2], and Apple Home [9] often require compatible
hardware and manual trigger-action programming, restricting flexi-
bility.

Smart devices are typically marketed for narrow applications,
with limited flexibility. A pet camera, for example, is not easily
repurposed for infant monitoring. Current platforms require users
to manually configure or program logic to perform complex tasks,
often without support for model-driven or personalized automation.
Consider fall detection: cameras offer high accuracy but low privacy;
vibration sensors reverse that trade-off. Ideally, a system would
combine multiple sensors based on user preferences.

We propose DomAlIn, a smart home platform that uses voice com-
mands to automate a wide range of tasks, without requiring users
to program logic. DomAlnemploys a three-stage logic generation
pipeline to dynamically build execution pipelines based on available
devices and user-defined preferences across four dimensions: accu-
racy, privacy, coverage, and power efficiency (Figure 1). It adapts to
device availability, automatically reconfiguring pipelines as needed.

Our contributions include:

1. We present DomAln, a configurable smart home system that
dynamically leverages in-home resources to provide personalized
services without user programming.

2. We propose a three-stage logic generation pipeline that assembles
execution plans based on device availability and user preferences,
satisfying up to 87% of tasks.

3. We validate DomAlInthrough real-world deployments and user
studies, showing up to 38% improvement in key PU and PEoU
factors.

2 Related Works

Several research prototypes of smart homes have been developed
over the years. [4] created an architecture using robots and multi-
media devices to track user behavior, [12] focused on optimizing
comfort with minimal energy consumption, and [6] introduced a
framework for connecting various smart devices. These works typi-
cally require specific sensor types, whereas we focus on leveraging
whatever sensors are available in the home to reduce adoption barri-
ers.
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Figure 1: Left) Typical process for automating home services using existing smart home ecosystems. DomAlIn eliminates the need for
residents to “program’ logic and enables more complex actions beyond simple triggers in existing smart home frameworks. Right)
Deployment of DomAlIn and various sensors/devices during a user study in a home setting.
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Figure 2: DomAlIn’s system architecture.

There is extensive research on using sensors to detect human
activity [14-16, 18-21], and exploring drones in smart homes [17].
Our work doesn’t introduce new detection algorithms but instead
creates a platform that dynamically leverages existing sensors and
methods to automatically execute tasks with minimal user guidance.

Commercial platforms from Google [10], Amazon [2], and Ap-
ple [9] allow device configuration, but users still need to program
logic, and complex tasks often require specific products with built-
in functionality. Open platforms like Home Assistant [3] provide
centralized control but still require programming knowledge. Our
work explores how a smart home Al can automatically generate
execution pipelines from voice commands without requiring manual
programming.

While interoperability remains a major challenge that industry
is addressing through initiatives like the Matter protocol [1], we
focus on how smart home systems can dynamically utilize avail-
able devices to reduce adoption barriers when interoperability is
achieved.

3 DomAln System Design

DomAlIn is designed to mimic how a person would approach en-
abling smart services. When a user speaks a command, DomAln
interprets it through a three-stage logic generation pipeline that au-
tomatically creates and deploys an execution pipeline tailored to
available devices and user preferences.

3.1 Three-Stage Logic Generation Pipeline

devices / sensors
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Figure 3: Device-action translation uses a tuned NLP model to
map spoken commands into viable device-action pairs, based on
whether the data collected from the sensor or device can be used
to satisfy the spoken command by running an “action”, model,
or algorithm.

Table 1: a) Example voice command inputs and sensor-action
pairs generated by our tuned GPT-3 NLP model. b) Performance
of our translation NLP model before and after tuning.

(a) (b)

Output Device-Action Pairs Recall | Precision
motion - high frequency detector Before Tuning | 0.00 0.00
“Let me know when microphone - barking detector After Tuning 0.96 0.92

the dog needs to go outside.” | vibration - high energy activity detection

Voice Command

camera - object detector
proximity - distance thresholding
microphone - door bell detector

“Tell me when
my package arrives.”

proximity - distance thresholding
“Don’t let anyone into light - binary “on” detector

the kitchen until tomorrow.” camera - person detector

3.1.1 Device-Action Translation. When humans implement a
task, they first determine which sensors could satisfy it. For example,
fall detection could use cameras, vibration sensors, or microphones.
DomAln translates voice commands into potential device-action
pairs using a tuned GPT-3 NLP model. We created a dataset of 600
command-solution pairs, achieving 96% recall and 92% precision
after tuning. This module also identifies the room referenced in
commands with 92% accuracy, filtering out device-action pairs using
unavailable sensors.

The tuning process involved three volunteers manually labeling
command-device-action pairs, creating a training set that maps com-
mands like "Alert me if someone falls" to a variety of solutions
including camera-pose detection, vibration-threshold detection, and
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Figure 4: Pipeline for the Scoring Module. This module uses user
preferences, u, to generate a score, c;, for each device-action i to
determine the most fitting devices/sensors and actions/models to
deploy that satisfies user preferences.

microphone-audio analysis. By using a large language model foun-
dation, our system can handle a wide variety of natural language
inputs and interpret user intent accurately without requiring rigid
command formats.

3.1.2 Scoring and Ranking. Each sensing approach has different
strengths and weaknesses. For example, cameras offer high accuracy
but low privacy, while vibration sensors provide better privacy but
lower accuracy. DomAln ranks potential solutions based on user pref-
erences across four dimensions (accuracy, privacy, power efficiency,
and coverage) using a characteristic vector for each device-action
pair.

The characteristic vector ¢; for device-action pair i represents
its performance across the four dimensions with values between 0
and 1. For instance, a camera with pose detection might have ¢; =
0.85,0.30,0.30,0.75, indicating high accuracy (0.85) and coverage
(0.75) but low privacy (0.30) and power efficiency (0.30). User
preferences are captured in a similar vector u that expresses the
importance of each dimension to the user.

We implemented four scoring methods and compared their per-
formance:

(1) Norm-based Distance: s;=1— ||lu—¢;|

(2) reLU Norm: s; =1 — ||[reLUu — ¢;||

(3) MLP-DNN: A deep neural network trained on human-scored

pairings

(4) Random Forest: A regression model trained on human-scored

pairings

Our evaluation found random forest regression performed best,
achieving an 87% task satisfaction rate. Devices scoring below a
threshold (0.4) are removed from consideration.

3.1.3 Pipeline Generation. The final step organizes sensors and
actions into a staged execution pipeline. DomAln uses two greedy
algorithms:

(1) Stage Generation: Groups compatible device-actions until the
stage score stops improving. To generate a stage, we order
sensors/actions in descending order based on their scores
and select the highest-scoring device-action as the initial
element. We then iteratively add compatible device-actions
that improve the stage’s overall score.

(2) Stage Evaluation: Determines if adding the stage to the pipeline
improves overall satisfaction of user preferences. We com-
pute a weighted average between the previous pipeline and
the newly added stage: v/ <— dv 1 —dv;, where 0 < d < | (we
found d = 0.8 optimal in our experiments).
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For example, a privacy-focused pipeline might first use vibration
sensors to detect potential falls, then activate a camera only when trig-
gered. This approach preserves privacy while maintaining accuracy.
DomAIn continues adding stages until no further improvement is
achieved, then deploys the pipeline using a library of pre-configured
actions.

The pipeline generation algorithm handles complex trade-offs and
creates multi-stage solutions that a single sensor approach could not
achieve. For instance, in the fall detection case, a user prioritizing
both coverage and privacy will receive a pipeline that uses micro-
phones (good coverage) combined with vibration sensors (good
privacy) in the first stage, activating further analysis only when
potential falls are detected.

3.2 System Implementation

DomAlIn requires three key inputs beyond voice commands:

(1) Device Availability: The system detects compatible devices
on the home network through a Matter-like protocol. Each
device reports its capabilities and sensing modalities (e.g.,
temperature sensing, video capture) through standardized
descriptors, allowing DomAln to assess available resources
without manual configuration.

(2) Device Location: Users specify which room each sensor is
in during setup. Although this requires initial manual input,
it’s a one-time process that enables room-specific task execu-
tion. Future versions could incorporate automatic localization
techniques using signal strength or acoustic features.

(3) Floor Map: For mobile devices like drones, DomAln needs a
floor plan, which can be quickly generated using smartphone
apps like RoomScan LiDAR. This map enables navigation
between rooms and optimal positioning of mobile sensors
when needed.

We implemented DomAlIn on an Nvidia Jetson Nano with a user
interface accessible via smartphone or web browser. The system
communicates with sensors through ESP8266 WiFi modules and
supports programmable drones for mobile sensing. Actions and
models are downloaded from a cloud library and executed locally to
preserve privacy.

Our deployment in real home environments used a variety of sen-
sors (vibration, distance, microphones, cameras) and a Tello drone
to enable diverse automation scenarios. By keeping computation
at the edge and leveraging existing protocols like Matter, DomAlIn
demonstrates how automatic pipeline generation can be integrated
into current and future smart home ecosystems.

4 System Evaluation

We evaluated DomAln’s ability to generate appropriate execution
pipelines across a wide range of scenarios. We created a dataset with
1600 different test cases by randomly selecting from 485 diverse
voice commands, generating random room configurations with 3-20
sensors from 20 different types, and varying user preferences.
Commands included a wide range of home automation tasks,
such as "Let me know when the dog needs to go outside," "Tell
me when my package arrives," and "Alert me if someone falls in
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Figure 5: Execution pipeline generation architecture and example of generating a fall detection pipeline in a bedroom. DomAIn
aggregates available sensors and actions in the room of interest and greedily attempts to generate and add stages to the pipeline to

satisfy user preferences.
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Figure 6: Examples of pipelines generated for '"detecting and
alerting if someone falls' with different user preferences: (top)
high coverage, (middle) high coverage + privacy, (bottom) high
accuracy + high power efficiency.
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Figure 7: a) User interface of DomAlIn, allowing users to view
connected devices and input/select their user preferences. b)
Floor plan of rooms captured by RoomScan smartphone appli-
cation.

the bathroom." For each command, we considered various sens-
ing approaches, from simple threshold-based detection to complex
computer vision and audio analysis.

10

Generated
Configuration

Optimal
Configuration

Stage! @ @ @ @
One |

: '
Stagei ,»"M_issing\\
Two i Cam/Face | :

Figure 8: Example of the Levenshtein loss between a generated
pipeline and the ""ground truth' pipeline. The loss is 2 because
we: 1) remove the extra distance sensor with thresholding, and
2) add a camera with a face detector.

Table 2: DomAlIn’s logic generation pipeline evaluation with four
scoring modules across 1600 voice command scenarios. Norm-
Lev is the normalized Levenshtein distance (lower is better).
""Satisfy'' shows the percentage of generated pipelines that could
accomplish the task. Best performing method for each preference
is highlighted.

Random Forest MLP DNN Baseline
Preference | norm-Lev Satisfy | norm-Lev Satisfy | norm-Lev Satisfy
Accuracy 0.192 0.888 0.182 0.898 5.120 0.314
Privacy 0.350 0.900 0.351 0.876 2.144 0.439
Power 0.176 0.817 0.205 0.783 3.321 0.398
Coverage 0.427 0.899 0.432 0.832 3.250 0.455
Overall 0.286 0.876 0.293 0.847 3.546 0.402

To measure how well a generated pipeline matches the ground
truth (human-crafted) pipeline, we used the Levenshtein distance
metric (Figure 8), which counts the minimum number of device-
action edits needed to transform one pipeline into another. We nor-
malized this distance by dividing by the total number of device-
action pairs in the ground truth pipeline.
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Table 3: Summary of user study comparing DomAlIn (A) with
Home Assistant (G).

Setting | Setup Time (min) | Program Time (min) | Pipeline | Usability
A G A G A AvsG
Acc 35.0 22.8 1.8 >30 8.2 74 vs 4.6
Pow 333 229 1.1 >30 7.0 7.6 vs 2.5
Cov 34.0 28.1 1.2 >30 8.0 8.3 vs 4.0
Priv 35.5 25.3 1.5 >30 7.3 79vs3.4
Avg 34.5 24.8 1.4 >30 7.6 7.8 vs 3.6

Table 2 shows the performance of DomAln’s logic generation
pipeline with different scoring methods compared to a baseline that
simply selects devices with the highest rating in the user’s most
important dimension. DomAlIn generates pipelines much closer to
human-designed ones, with a normalized Levenshtein distance 10-12
times smaller than the baseline across all user preferences.

We also evaluated whether each generated pipeline could logically
accomplish its task. The Random Forest scoring method achieved
the highest satisfaction rate, successfully generating viable pipelines
for 87.6% of tasks compared to only 40.2% for the baseline. This
method performed particularly well for privacy-focused (90.0%) and
coverage-focused (89.9%) preferences.

To analyze pipeline generation in detail, we examined a fall de-
tection scenario. The system created three distinct pipelines based
on user preferences: (1) for accuracy, it deployed cameras with pose
detection; (2) for privacy, it used vibration sensors as initial triggers
followed by camera activation only when needed; (3) for power
efficiency, it used microphones and vibration sensors in a first stage,
with selective drone deployment for confirmation.

Based on these results, we adopted the Random Forest scoring
method for our physical deployment. The entire pipeline generation
process takes approximately 4 seconds on our Jetson Nano platform,
which is acceptable for most home automation tasks.

5 User Study and Physical Deployment

We evaluated how users respond to DomAlIn and how its generated
pipelines perform in real home environments. We recruited 23 par-
ticipants (ages 20-30) with engineering backgrounds and compared
DomAlIn to Home Assistant on four smart home tasks: fall detection,
child monitoring, stove monitoring, and intruder detection.

Our physical deployment involved a real home with four rooms
(living room, bedroom, kitchen, bathroom), equipped with various
sensors: vibration sensors (8), distance sensors (6), microphones (4),
cameras (2), environmental sensors (temperature, air flow, light),
and a programmable drone. Participants were asked to complete two
phases:

1. Setup Phase: Install sensors and configure the system. DomAlIn
required slightly longer setup time (34.5 vs 24.8 minutes) due to
floor mapping but received similar ease-of-use ratings.

2. Programming Phase: Create automation for the four test tasks.
DomAlIn excelled here, taking just 1.4 minutes on average compared
to Home Assistant, where no participant completed programming
within 30 minutes. Users simply selected their preferences (accu-
racy, privacy, power, coverage) in DomAln, while Home Assistant
required Python scripting knowledge.
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Figure 9: Fall detection pipelines deployed by DomAlIn in the
bedroom under a) accuracy, b) power, and c) power settings
when the camera fails.

DomAln-generated pipelines received high ratings (7.6/10 on
average), with 95% of tasks satisfactorily met. Participants were
particularly impressed by the system’s ability to adapt to their pref-
erences; for example, privacy-focused users noted that DomAlIn
minimized camera usage when appropriate.

Before and after using DomAln, participants rated statements
about smart home technologies (1-4 scale, higher meaning more
concern). Initially, the average concern score was 3.02, with only
23% of responses indicating low concern (1-2). After using DomAln,
the average decreased to 2.19, with 61% in the low concern range—a
38% improvement. Most users (83%) agreed DomAln executed tasks
well, though privacy concerns remained.

In physical deployments, we tested DomAlIn across all user prefer-
ence settings. For fall detection with accuracy preference, the system
achieved 95% true positive and 98% true negative rates. When a
camera failed during testing, DomAlIn automatically reconfigured
the pipeline to use the drone instead, demonstrating its adaptability.

A particularly interesting case was intruder detection, where Do-
mAln created a multi-sensor first stage combining microphones (for
sound detection) with distance sensors (for movement detection),
followed by a drone deployment only when triggered. This demon-
strated how the system could intelligently combine multiple sensing
modalities to create solutions that balanced coverage, privacy, and
power efficiency.

5.1 Case Study: Fall Detection Pipeline

To illustrate DomAln’s capabilities in detail, we analyze the fall
detection pipeline across different user preference settings. Fall
detection is a critical home safety application with significant trade-
offs between accuracy, privacy, and power consumption.

Figure 9a shows the pipeline generated for the bedroom with the
accuracy preference setting. DomAln uses the high-accuracy camera
inside the room to continuously monitor for poses of a fallen person.
This single-stage approach achieves 95% true positive and 98% true
negative rates but has lower privacy ratings (3.2/10) from users.

For power-efficiency preference (Figure 9b), the system creates
a two-stage pipeline. The first stage consists of multiple vibration
sensors to detect potential falls with minimal power consumption
(262 mW base consumption). Only when these sensors detect a
potential fall does the system activate the camera for pose detection,
significantly reducing overall power usage while maintaining 85%
true positive detection.
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Most notable is DomAlIn’s ability to adapt to failures. Figure 9¢
shows the pipeline automatically regenerated when the bedroom
camera became unavailable. The system reconfigured to use the
drone with pose detection capabilities as a second-stage replacement,
maintaining similar performance characteristics with only minor
changes to power efficiency and latency.

This adaptability extends to other scenarios as well. For intruder
detection with coverage preference, DomAln deployed a multi-
sensor first stage combining microphones and distance sensors,
followed by drone-based visual confirmation. This combination
provided 80% true positive detection rate with wide spatial coverage
that no single sensor could achieve.

5.2 Impact on Smart Home Adoption Barriers

Our user study revealed significant insights about how automatic
pipeline generation impacts smart home adoption barriers. Before
using DomAlIn, participants identified four major concerns with
existing systems:

1. Programming Complexity: Users without technical backgrounds
found it impossible to implement complex automation tasks.

2. Limited Device Reusability: Most devices were perceived as
single-purpose, requiring new purchases for each automation task.

3. Privacy Concerns: Users worried about continuous monitoring
from cameras and microphones.

4. Economic Burden: The perceived need for specialized devices
for each task created financial barriers.

DomAln directly addressed these concerns by eliminating pro-
gramming requirements, dynamically repurposing generic sensors,
creating privacy-aware multi-stage pipelines, and reducing the need
for specialized devices. The 38% improvement in user perception
metrics demonstrates the effectiveness of this approach.

Particularly notable was the change in user attitudes toward pri-
vacy. While privacy remained a concern (though reduced), users ap-
preciated the transparency of DomAln’s preference-based approach.
As one participant stated: "I like that I can tell it privacy is important
to me and it automatically reduces camera usage—it gives me more
control without requiring technical knowledge."

These findings suggest that automatic pipeline generation sig-
nificantly lowers barriers to smart home adoption by addressing
both perceived usefulness and perceived ease of use simultaneously,
without sacrificing customizability or control.

6 Conclusion

In this work, we present DomAln, a smart home system that dynam-
ically and intelligently leverages sensors and actuators to provide
a wide range of services without requiring users to program logic.
Through our novel three-stage logic generation pipeline, DomAln
generates execution pipelines based on available sensors and user
preferences, satisfying 87% of tasks across diverse home settings.

Our user study demonstrates that DomAln significantly improves
automation ease compared to existing frameworks, enhancing factors
affecting perceived usefulness and ease of use by up to 38%. The
system’s ability to automatically adapt to both user preferences and
changing device availability addresses key barriers to smart home
adoption.
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DomAIn represents a fundamental shift in how smart home sys-
tems operate—from explicitly programmed logic to automatically
generated and adaptive execution pipelines. By eliminating pro-
gramming requirements while maintaining customizability through
preference-based generation, DomAIn moves us one step closer to
truly intelligent homes that adapt to users’ needs rather than requir-
ing users to adapt to technology limitations.
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