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ABSTRACT

Cardio exercise elevates both heart rate and respiration rate, result-
ing in distinct physiological changes that affect speech patterns,
pitch, breathing sounds, and heart sounds. These variations, which
occur post-exercise, are influenced by factors such as exercise in-
tensity and individual fitness levels. A comprehensive audio dataset
is critically needed to capture post-exercise physiological changes,
as existing datasets focus mainly on resting speech, breathing, and
heart sounds, neglecting the dynamic shifts following physical exer-
tion. Current datasets fail to capture unique post-exercise variations
like speech disfluencies, altered breathing patterns, and variable
heart sound intensities, limiting model generalizability to post-
exercise conditions. To address this gap, we recruited 59 subjects
from diverse backgrounds to engage in cardio exercise, specifically
running, reaching varied exertion levels to produce a rich dataset.
Our dataset includes 250 sessions totaling 143 minutes of structured
reading, 47 minutes of spontaneous speech, 71 minutes of breathing
sounds, and 62.5 minutes of phonocardiogram (PCG) recordings.
We designed and deployed preliminary case studies to show that
speech changes post-cardio could serve as an indicator of exertion
level. We envision this dataset as a foundational resource for de-
signing models in speech and cardiorespiratory monitoring that are
resilient to the physiological shifts induced by exercise. This dataset
could advance natural language processing (NLP) applications, mo-
bile health, and wearable sensing technologies by enabling resilient
and accurate physiological monitoring in real-world conditions.
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1 INTRODUCTION AND MOTIVATION

With the rise of artificial intelligence of things and ubiquitous
smart mobile platforms, acoustic-based methods have gained in-
terest in vital sign monitoring and fitness tracking, offering a non-
invasive and unobtrusive alternative for health monitoring. Cardio
exercise, known for its cardiovascular benefits, induces physio-
logical changes affecting vital signs and the acoustic features of
speech, breathing, and heart sounds [7]. Post-exercise breathing
often shows distinct pauses and micro-breaths, with potential vari-
ations like exercise-induced wheeze or asthma [5, 41]. Since speech
relies on breath coordination, altered respiration post-exercise may
lead to disfluency, characterized by interruptions in the flow of
speech, such as pauses, repetitions, or hesitations [59]. Heart sounds,
or phonocardiograms (PCGs), also shift with increased cardiovas-
cular workload, such as elevated heart rate and intensified first (S1)
and second (S2) heart sounds [15].

Beyond fitness and health monitoring, this work intersects with
advancing fields of natural language processing (NLP) and auto-
matic speech recognition (ASR), which are transforming human-
technology interactions. Leveraging microphones in mobile devices
for acoustic-based health monitoring offers a unique dual advan-
tage: enabling multi-task applications that benefit both health and
speech-related functionalities [22, 25, 32, 46, 68]. Current ASR and
voice-assistant systems often underperform for users who stutter,
are non-native speakers, have accents, or have speech disabili-
ties [43, 55]. ASR systems also struggle to accurately recognize
children’s speech due to differences in speech patterns [2]. Integrat-
ing speech analysis with disfluency and breathing pattern detection
enhances ASR systems to accommodate atypical breathing and se-
mantic breaks. This approach also aids in assessing and treating
stuttering and conditions like Parkinson’s disease [41, 49, 58, 69].

However, existing cardiorespiratory audio datasets and speech
breathing/disfluency datasets are limited in capturing the unique
acoustic variations that occur post-exercise. These datasets pre-
dominantly focus on resting speech, breathing, and heart sounds,
overlooking the dynamic physiological changes that follow phys-
ical exertion [1, 14, 17, 18, 21, 30, 35, 47, 53]. These datasets lack
the breadth of acoustic data reflecting speech disfluencies, altered
breathing patterns, and the varying intensities of heart sounds that
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emerge after cardio exercise, making it challenging for current
models to generalize to post-exercise conditions [46].

To address this gap, we created a novel dataset by recruiting 59
participants from diverse demographic backgrounds and fitness
levels to engage in running as a means to achieve various exertion
levels while recording acoustic data. Although running was chosen
for this study, its sole purpose was to modulate exertion levels after
cardio exercises, as research indicates that different cardio exercises
can be adjusted to induce similar exertion levels by modifying inten-
sity and duration [33, 63]. Our dataset comprises over 250 sessions,
including 143 minutes of structured reading (read paragraphs out
loud), 47 minutes of spontaneous speech, 71 minutes of breathing
sounds, and 62.5 minutes of phonocardiogram (PCG) data. Addition-
ally, the dataset contains non-sensitive background information,
such as age, gender, weight, and exercise and running experience,
allowing for more nuanced analyses. The details of this proposed
dataset are introduced in Section 3. We conducted a case study with
this dataset, which leverages post-exercise speech patterns to clas-
sify exertion, obtaining a 5-fold cross-validation accuracy of 73.02%
on structured reading and 81.02% on spontaneous speech, offering
a promising avenue for personal health monitoring. This dataset
provides a foundation for (i) developing acoustic models resilient to
variations in post-exercise physiological exertion levels, (ii) advanc-
ing embedded Al and sensing applications in fitness tracking, health
monitoring, and speech technology, and (iii) expanding acoustic-
based monitoring in mobile health and wearable devices while
enhancing the adaptability of voice-based interfaces. The dataset is
available at https://github.com/Columbia-ICSL/data_after cardio.

2 BACKGROUND AND RELATED WORK

Cardiorespiratory Audio Datasets and Mobile Sensing Ap-
plications: Datasets in the literature containing cardiorespiratory
audio, such as Audio Set [17], FSD50K [14], and FluSense [1], are typ-
ically annotated for audio event classification and are often short in
duration and lack in a post-exercise context. A few datasets provide
more detailed annotations specifically for respiratory and cardiac
sounds. For example, the dataset from [53] includes timestamped
annotations of respiratory cycles and labels for wheezing and crack-
les. Existing research utilizing this dataset primarily focuses on
automatic lung sound classification [16, 36, 39, 60]. More special-
ized datasets for heart sounds include the EPHNOGRAM dataset,
which contains simultaneous electrocardiogram (ECG) and phono-
cardiogram (PCG) recordings, and the CirCor DigiScope Phono-
cardiogram dataset, which provides PCG recordings with detailed
timestamped segmentations of S1 and S2 heart sounds, along with
heart murmur annotations [30, 47]. Research on these datasets has
led to advancements in PCG segmentation for detecting S1 and S2
sounds using deep recurrent neural networks (RNNs), contributing
to improved heart rate estimation and abnormal heart sound de-
tection [25, 28, 44, 46]. However, these datasets primarily capture
heart and respiratory sounds at rest and do not account for the
variations introduced by cardio exercise.

In addition to datasets, there have been several efforts to enable
cardiorespiratory-related applications using mobile or wearable
devices. Smartphones and headphones have been employed in a
passive acoustic sensing system designed to detect rope-jumping
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activities and breathing patterns [26]. Ren et al. utilized smartphone-
captured breathing sound after cardio exercise to monitor exercise
intensity [52]. BreathPro was designed to monitor breathing modes
during running [27]. RunBuddy leverages smartphones and Blue-
tooth headsets to monitor running rhythm and estimate local res-
piratory coefficient (LRC) [22]. A multi-task learning model was
proposed to estimate respiratory rate from breath audio obtained
through wearable microphones after exercise [32]. However, there
is a lack of comprehensive datasets that capture the acoustic dy-
namics of cardio-respiratory sounds immediately following cardio
exercise across varying exertion levels.

Speech Breathing and Disfluency and Downstream Appli-
cations: Cardio exercise may change speech breathing and intro-
duce conversational disfluencies, including repetitions, restarts,
and corrections. Previous research has explored machine learning
approaches to estimate respiration rates from speech, such as us-
ing close-talking microphone recordings from subjects at rest [41].
However, while there exist datasets (such as Disfl-QA [21], Sep-
28k [35], FluencyBank [51], and FluencyBank Timestamped [56])
that capture disfluent speech in various contexts, including speech
recordings from individuals who stutter from children and adults
or non-native speakers, as well as from podcasts, they primarily
focus on speech produced in resting conditions [21, 35, 51, 56].

Recent advancements in automatic speech recognition (ASR)
for stuttered or disfluent speech aim to enhance user experiences
and expand applications for individuals who stutter, have speech-
related conditions, speak with accents, or are non-native speak-
ers [23, 42, 43]. Shonibare et al. introduced a method called ‘Detect
and Pass, a context-aware classifier designed to improve ASR acces-
sibility for individuals who stutter [58]. Additionally, multimodal
architectures have been proposed to enhance disfluency detection
accuracy compared to unimodal approaches [55]. Speech disflu-
ency is also being utilized as a feature for disease assessment. For
instance, PDAssess, a system employing free-speech analysis, pro-
vides a four-stage assessment of Parkinson’s disease by analyzing
disfluency and other speech characteristics [69]. Additionally, dis-
fluencies in read speech have been shown to effectively predict
cognitive impairment in individuals with Parkinson’s disease [54].
However, despite these advancements, current datasets and meth-
ods primarily address disfluency in contexts without physical exer-
tion, overlooking the distinct speech and breathing patterns that
appear after cardio exercises.

3 EXPERIMENT SETUP AND DATASET

We design a portable and reliable data collection setup and exper-
iment procedure, collaborating with a licensed running coach to
ensure the safety of the participants. This research received ap-
proval from the Institutional Review Board (IRB). We recruit 59
adult subjects from diverse demographic distributions. Informed
consent was obtained from all participants before their involvement
in the study. Participants were fully informed about the nature of
the data being collected, the purpose of the study, and their right
to withdraw at any time. Non-personal-identifiable demographics
and fitness level background information are collected.

Experiment Procedure: As illustrated in Figure 1, our experi-
ment includes three main steps. First, in Step 1, each participant
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Figure 1: The 3-Step experiment procedure. The proposed dataset includes: (i) the PCG recordings in Step 2; (ii) the reading,

spontaneous speech, and deep breath sounds in Step 3.

Table 1: Exertion level definition of the modified five-level Borg RPE.

Exertion Level Description

1-Very light Anything other than complete rest.

2-Light Can maintain for hours, easy to breathe and carry on a conversation.
3-Moderate Can exercise for long periods, able to talk, and hold short conversations.
4-Vigorous On the verge of becoming uncomfortable, short of breath, can speak a sentence.
5-Max effort Feels impossible to continue, completely out of breath, unable to talk.

59 Subjects, 250 3-Step Sessions

Weekly Exercise Frequency

1-2 times
32.8%
_3.4% <once
43.1% 3.4% everyday
17.2%
3-5 times > 5 times

250 sessions of
15-second PCG

o
/|

Figure 2: Overview of the dataset to be open-sourced, comprising 250 3-Step experiment sessions from 59 subjects.

completed several running sessions at constant speeds of 5, 6, 7, 8,
9, and/or 10 miles per hour (mph) for 3-5 minutes, based on their
running proficiency, to achieve varying exertion levels. As shown
in Table 1, to measure perceived exertion, we used a modified five-
level Borg RPE (Rating of Perceived Exertion) scale [4], which is a
well-established and widely-adopted method for assessing exercise
exertion levels [32, 57, 66, 70]. Participants were informed that they
do not require higher physical exertion than the “moderate” range.
After each session, they reported their perceived exertion level. A
certified running coach supervised the experiment to ensure par-
ticipant safety and validate the accuracy of self-reported exertion
levels.

Immediately following each running session, in Step 2, we recorded
a 15-second phonocardiogram (PCG) at the mitral valve (MV) aus-
cultation location—the heart’s apex—using a 3M Littmann CORE
Digital Stethoscope [24]. The MV location was selected for its clear
access to mitral valve sounds, especially S1 (the first heart sound)
and any murmurs associated with the mitral valve.

Finally, immediately after Step 2, each participant proceeded
to Step 3, where they were asked to: (i) read a paragraph aloud
provided by the experimenter, (ii) spontaneously describe their
feelings post-run or share thoughts about their day while speaking
alone, and (iii) take a few deep breaths, either before or after the
reading and spontaneous speech. Participants wore a Coros Pace 3
sports watch [9] and a Vernier Go Direct strain-gauge chest-belt
sensor [62] as references. Heart rate data was collected with the
Coros Pace 3 (at 1 Hz), and chest expansion/contraction (indicating
inhalation and exhalation) was recorded by the Vernier Go Direct
respiration belt (at 20 Hz). Reading, spontaneous speech, and deep
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breathing sounds were recorded using the Voice Memos app on
iPhones [29].

Dataset: Unix timestamps were used to synchronize the data sources:
(i) heart rate from a sports watch, (ii) chest-belt pressure measure-
ments (in Newtons), and (iii) audio capturing speech and respira-
tion. Figure 2 provides an overview of the proposed dataset, which
includes 250 3-Step experimental sessions from 59 subjects from di-
verse backgrounds and fitness levels. In particular, subjects reached
various exertion levels after Step 1 in the 250 sessions. There are 250
15-second PCG recordings collected in Step 2. Note that in Step 3,
some subjects were unsure of what to say or spoke while laughing.
We removed these invalid spontaneous speech clips. As such, there
are 143 minutes of structured reading from 250 recordings, 47 min-
utes of spontaneous speech from 134 recordings, and 71 minutes of
deep breathing sound from 347 recordings.

Figure 3 and Figure 4 illustrate: (i) the phonocardiograms (PCGs)
recorded using a digital stethoscope, and (ii) spectrogram, heart
rate, and chest-belt pressure measurements when reading an iden-
tical paragraph immediately after an example subject completed
5-minute treadmill running sessions at 6 mph and 10 mph. This
subject reported exertion levels of 2 (light) and 4 (Vigorous) to the
6-mph and 10-mph sessions, respectively. As shown in Figure 3, the
PCG from the 10-mph session shows significantly higher amplitude
and heartbeat frequency, indicating increased cardiovascular activ-
ity. In addition, when reading the same paragraph, as illustrated in
Figure 4, the subject had more frequent breathing pauses, resulting
in a longer time to complete the reading task after the 10-mph ses-
sion. Micro-breathing was observed during the reading after both
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Figure 3: Comparison of PCG recordings after a subject com-
pleted running sessions at 6 mph and 10 mph reveals variations
in amplitude and interbeat intervals during the cooldown
period.
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Figure 4: Comparison for audio, breathing, and heart rate af-
ter a subject completed running sessions at 6 mph and 10 mph.

6- and 10-mph sessions when the subject attempted to complete
semantically connected sentences/phrases.

4 EXERTION LEVEL CLASSIFICATION CASE
STUDY

To highlight the dataset’s relevance for applications in fitness track-
ing and vital sign monitoring, we conducted a preliminary case
study to benchmark popular classification models, demonstrating
that post-exercise speech characteristics (audio recordings in Step
3) can indicate exertion levels.

Features, Labels, and Model Training: To provide a preliminary,
interpretable analysis of exertion level classification, we grouped
exertion levels into two categories: low (levels 1 and 2) and high
(levels 3, 4, and 5), as self-reported RPE scores may contain per-
sonal biases. We investigated three features: (i) widely used acoustic
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Figure 5: Number of sessions and number of clips for struc-
tured paragraph reading and spontaneous speech.

features, Mel Filterbanks (MFBs) and Mel-Frequency Cepstral Coef-
ficients (MFCCs); and (ii) the layer 4 representations generated from
a pre-trained Wav2Vec2-base model (W2V2 Emb-4), which have
been shown to be informative for bioacoustic and speech breathing
tasks in [32, 41, 46, 50]. We empirically segmented all audio record-
ings from the read paragraph and spontaneous speech tasks in Step
3into 15-second clips with a 1-second stride, resulting in 4,958 clips
for the read paragraph task and 1,267 clips for spontaneous speech.
The distribution of clips across exertion levels is shown in Figure 5.

With these features, we evaluated three neural network architec-
tures: (i) a 4-layer multi-layer perceptron (MLP) model, (ii) a modified
2-dimensional convolutional neural network (2D CNN) model as
proposed in [46], and (iii) a modified 1-dimensional convolutional
neural network long short-term memory (1D CNN-LSTM) model
from [41]. For each feature-model combination, we used recordings
from the two speech tasks in Step 3 (read a paragraph, sponta-
neous speech clips, and both) to perform 5-fold cross-validation
with the segmented 15-second audio clips (randomly split on the
session level) and evaluate how each speech type contributes to
classification with the results shown in Table 2.

Case Study Results: The 1D CNN-LSTM model consistently achieves
high cross-validation accuracy across all speech conditions among
the three models, with optimal results when using W2V2 Emb-4
(0.7302, 0.8102, and 0.7580 for Reading, Spontaneous Speech, and
combined conditions, respectively), suggesting the 1D CNN-LSTM ef-
fectively captures speech breathing characteristics. Overall, W2V2
Emb-4 contains the most information related to exertion level in
speech breathing, followed by MFCC and then MFB. Additionally,
we note that, across all model-feature combinations, classifying
exertion level using only spontaneous speech clips outperforms
using read paragraph clips or a combination of both, with slightly
higher variability likely due to the smaller data size for sponta-
neous speech. This is likely because, during spontaneous speech,
people adjust their breathing and speech tempo more naturally,
while structured paragraph reading may lead individuals to rush
through the text, distorting their natural speech breathing patterns
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Table 2: 5-Fold CV results of the combinations of model structures, features, and reading/spontaneous speech.

5-Fold Average Cross-Validation (CV) Accuracy (mean + std)

Model Feature (dim) Reading Spontaneous Speech | Reading & Spontaneous Speech
MFB (40, 1292) 0.5082 £ 0.05 0.5854 £ 0.03 0.5351 + 0.04
MLP MFCC (40, 1292) 0.5115 £ 0.05 0.5651 £ 0.03 0.5364 £+ 0.03
W2V2 Emb-4 (749, 768) 0.6348 £ 0.03 0.7215 = 0.07 0.6776 = 0.02
MFB (40, 1292) 0.6255 £ 0.05 0.7271 £ 0.05 0.6340 = 0.03
2D CNN MFCC (40, 1292) 0.6752 £ 0.05 0.7329 £ 0.05 0.7061 * 0.04
W2V2 Emb-4 (749, 768) 0.212 £ 0.03 0.7687 £ 0.02 0.7040 £ 0.03
MFB (40, 1292) 0.6377 £ 0.07 0.7098 £ 0.06 0.6175 £ 0.03
1D CNN-LSTM MFCC (40, 1292) 0.6725 £ 0.02 0.7469 * 0.13 0.7173 £ 0.05
W2V2 Emb-4 (749, 768) 0.7302 + 0.05 0.8102 + 0.04 0.7580 + 0.03

Combined Confusion Matrix (5 Folds)

low

True Exertion

high

|
low

high
Predicted Predicted

Figure 6: Confusion matrix combining the results of 5-fold
cross-validation for the 1D CNN-LSTM model using W2V2
Emb-4 features on spontaneous speech data.

and acoustic features that may be highly correlated with exertion
levels.

Example Error Analysis: We further looked into the 5-fold cross-
validation results of the best-performing model (1D CNN-LSTM with
W2V2 Emb-4 on spontaneous speech). The combined confusion
matrix in Figure 6 reveals a slight tendency toward underestimation,
where the model predicts low exertion when the true label is high.
This may be caused by personal biases in perceived exertion and
variations in individual recovery rates. Additionally, we observed
that predictions remained consistent across 15-second window
clips from the same recording, suggesting that exertion-related
characteristics are consistently present in post-exercise speech.

5 FUTURE DIRECTIONS AND ENABLED
APPLICATIONS

In this work, we recruited 59 subjects and created a comprehensive
dataset that includes phonocardiograms, structured paragraph read-
ings, spontaneous speech, and breathing (deep breaths) recorded
after achieving various physiological exertion levels through cardio
exercise and subject background information. Below, we outline
future directions and potential applications enabled by this dataset:
Exercise Physiology and Personalized Health Applications:
Beyond the preliminary case studies for exercise exertion monitor-
ing in Section 4, this dataset can support more profound studies
on recovery patterns for fitness and health monitoring. Integrating
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chest belt pressure, heart rate, and PCG signals can inform per-
sonalized training recommendations and detect abnormal recovery
patterns indicative of health issues [38, 65]. Additionally, with ac-
cess to subject background information, researchers can examine
how factors such as age, fitness level, and exercise habits influence
recovery rates and exertion levels, supporting personalized, real-
time interventions in mobile health systems for preventive care and
well-being management.

Wearable and Mutimodal Sensing Technology: The integra-
tion of speech breathing audio, chest-belt pressure measurements,
and heart rate data in this dataset provides a foundation for ad-
vanced sensor fusion techniques in wellness tracking via personal
mobile and wearable devices. This dataset offers valuable insights
for designing and calibrating multimodal wearable systems capable
of seamlessly combining respiratory, acoustic, and cardiovascu-
lar data to deliver continuous and unobtrusive health monitor-
ing [10, 13, 20, 34, 45]. It can drive the development of innovative
multimodal algorithms for virtual fitness assistants, allowing them
to adapt recommendations based on real-time physiological re-
sponses and further extend the applications of embedded systems
and wearable technology for personal self-care and proactive health
monitoring [61].

Machine Learning for Acoustic and Time-series Cardiores-
piratory Signals: As mentioned in Section 2, existing cardiores-
piratory audio datasets [1, 14, 17, 47, 53, 67] primarily capture
bioacoustic data at rest. While the proposed dataset is valuable as
a standalone resource, its utility is further amplified when inte-
grated with existing datasets, complementing them to enhance the
development of machine learning and foundation models (such as
CLAP [11], AST [19], and HeAR [3]), enabling more robust appli-
cations like audio event classification, disease detection, emotion
classification, and health monitoring [12, 40], as well as support-
ing telemedicine by providing audio biomarkers insights to enrich
the telemonitoring of patients [6]. For example, this dataset aids
in distinguishing between pathological and exercise-induced car-
diorespiratory conditions.

With data encompassing multiple time-series biosignals, bioa-
coustics, and structured/unstructured speech, this dataset can ad-
vance machine learning models that leverage multimodal inputs [31].
The dataset could also support the development of transfer learning
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models to adapt across different exercise types, environments, and
population demographics as well as multimodal time-series sensing,
further bridging the gap between Al-driven health monitoring and
practical deployment in mobile and embedded systems for everyday
pervasive monioring [37].

Speech and Language Analysis under Physical Exertion and
Speech Breathing/Disfluency Analysis: The proposed dataset
can serve as a valuable addition to existing speech and disfluency
datasets [8, 21, 35, 48, 51, 56], addressing a gap in contexts that
involve physical exertion. By capturing speech, breathing, and dis-
fluencies at different exertion levels, this dataset enables research
into how physical strain influences speech production, breathing
patterns, and disfluency types (e.g., pauses, repetitions, restarts),
and further enhances applications in speech accessibility support,
disease assessment (e.g., respiratory issues, neurological conditions,
and speech disabilities), and emotion classification [23, 54, 69]. Addi-
tionally, popular voice-command systems often struggle with users
who stutter or are physically active [64]. This dataset can help de-
velop more robust ASR models and disfluency detection systems
that account for physiological changes, making voice-command
interfaces more accessible and effective in real-world settings. Fur-
thermore, this dataset can advance real-time, on-device speech and
breathing analysis in wearable and mobile systems and contribute
to more adaptive human-computer interaction in dynamic environ-
ments for physically active user.

6 CONCLUSION

In this work, we present a comprehensive dataset that captures vari-
ations in speech, breathing, and heart sounds after cardio exercise
at different exertion levels, addressing a critical gap in resources for
analyzing physiological changes post-exercise. Our dataset includes
250 sessions from 59 subjects of diverse backgrounds and fitness
levels, with 143 minutes of structured reading, 47 minutes of sponta-
neous speech, 71 minutes of breathing sounds, and 62.5 minutes of
PCG data, spanning multiple modalities and exertion levels. It also
incorporates background information such as age, gender, weight,
and exercise experience, enabling in-depth analysis of physiological
responses. Our preliminary case study demonstrates the potential
of post-exercise speech features to accurately classify exertion lev-
els, setting the stage for exertion tracking and extensive health
monitoring applications. Future work can be built on these insights,
developing adaptive wearable health systems, enhancing automatic
speech recognition under physical strain, and supporting research
in cardiorespiratory health and speech disfluency. Additionally, this
dataset can contribute to advancing embedded Al and sensing appli-
cations, enabling more efficient real-time physiological monitoring
and robust multimodal health analytics.
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