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CaNRun: Non-Contact, Acoustic-based Cadence
Estimation on Treadmills using Smartphones
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ABSTRACT

Running with a consistent cadence (number of steps per
minute) is important for runners to help reduce risk of injury,
improve running form, and enhance overall bio-mechanical
efficiency. We introduce CaNRun, a non-contact and acoustic-
based system that uses sound captured from a mobile device
placed on a treadmill to predict and report running cadence.
CaNRun obviates the need for runners to utilize wearable
devices or carry a mobile device on their body while running
on a treadmill. CaNRun leverages a long short-term memory
(LSTM) network to extract steps observed from the micro-
phone to robustly estimate cadence. Through an 8-person
study, we demonstrate that CaNRun achieves 96.8 % cadence
detection accuracy without calibration for individual users,
which is comparable to the accuracy of the Apple Watch
despite being non-contact.
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1 INTRODUCTION

A runner’s cadence, or step rate, is one of the many metrics
that are important for reducing injury, improving speed, and
increasing endurance. To estimate and record cadence, a
person typically needs to use a wearable (e.g., sports watch)
or carry their mobile phone. Close to 90 % of Americans own
a smartphone, but only around 30 percent of the population
use wearable devices [1]; and carrying a mobile phone can
be unwieldy while running. However, we recognize that it is
not uncommon to see people place their mobile devices on
the treadmill, often to provide entertainment, while running.
We propose CaNRun, a non-contact, mobile, and acoustic-
based system for estimating a runner’s cadence on a tread-
mill. CaNRun estimates cadence using sounds observed from
the mobile phone’s microphone as it sits on the treadmill,
leveraging a long short-term memory-based (LSTM) method
to extract and count running steps. We leverage an audio-
based approach instead of using the phone’s camera, as it
is less privacy intrusive and requires less computation than
vision-based methods. We demonstrate through an 8-person
study that CaNRun estimates cadence with more than 96.8 %
accuracy, which is comparable to an Apple Watch. CaNRun
also provides preliminary ground contact time (GCT) infor-
mation. Currently, CaNRun runs on a user’s smartphone.
We also envision that CaNRun can come equipped in future
treadmills. We make the following contributions:

e We propose CaNRun, a smartphone-based system that
measures a runner’s cadence on a treadmill. CaNRun esti-
mates the user’s step rate using the audio observed from
the smartphone’s microphone as it sits on the treadmill.
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e We propose an LSTM-based method to clean and extract
steps from audio observed from the microphone. This
method also provides preliminary insights for the GCT.

e Through an 8-person study, we demonstrate that CaN-
Run estimates cadence with a 96.8% accuracy without cal-
ibration for individual users, which is comparable to the
accuracy of an Apple Watch (98.0 %).

2 RELATED WORKS

Cadence is defined as simply the number of steps a person
takes in a minute, and is a common metric runners use to
improve their consistency. Previous works have found that
running cadence has a profound effect on the overall running
efficiency (RE), determining up to 28% of an individual’s
RE, with the closely related stride length metric making up
another 23% of RE [8]. In addition to wasting energy, running
with a sub-optimal cadence can also cause injuries due to
higher impact forces acting on the feet [9].

There is a large market of wearable devices that can esti-
mate running cadence using inertial measurement unit (IMU)
data, and these devices are generally fairly accurate when
evaluated in control conditions [6]. The downside of wear-
able devices is that they often require a calibration period
and health data from a person to achieve the best results.
Additionally, some devices only offer cadence or ground con-
tact time information when connected to GPS, making them
ineffective when running on the treadmill. The attachment
of wearable devices to the user may also cause discomfort
during running, particularly during high-intensity training.

Acoustic systems leveraging both air and ground propa-
gated vibrations and neural networks have also been used
to localize occupants [3]. Additionally, previous works have
analyzed footsteps and gait using acoustic signals [2].

A closely related metric to cadence is Ground Contact
Time (GCT), which is defined as the amount of time a run-
ner’s foot spends in contact with the ground. GCT has been
found to correspond greatly with running efficiency as well,
with a longer GCT being more efficient for distance running,
while shorter GCT is more desirable for speed running [5].

3 STUDY DESIGN
3.1 Experiment Setup

To collect training data and evaluate CaNRun, we recruited
8 voluntary participants, including 4 men and 4 women be-
tween ages 18 and 30. The participants’ height ranges from
5’1" to 6’17 and their weight falls between 97 lbs and 183 Ibs.
All procedures of this study was approved by the Columbia
University Institutional Review Board (IRB). Every partici-
pant wore an Apple Watch for a baseline comparison, placed
their smartphone on the treadmill console, and completed
four separate running sessions at constant speeds of 5, 6, 7,
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Figure 1: The experiment setup with two smartphone
placement cases.
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Figure 2: (a): The effects of different threshold settings
based on MediaPipe Pose. (b)-(d): The visualization of
each threshold overlaid on the full-body segmentation
mask.

and 8 miles per hour (mph). Each running session lasts for 5
minutes.

As shown in Figure 1, to capture the ground truth of the
runners’ movements, one video recording device is posi-
tioned at the back and center of the treadmill. A smartphone
is placed in portrait (case 1) or horizontal orientations (case
2) on the treadmill platform to record running sound data.
During each running session, the user activates the Apple
Watch’s cadence estimator while the video recording devices
and smartphone begin capturing video and audio, respec-
tively. After each running session, the audio and video clips
are synchronized to obtain ground truth labels.
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Figure 3: CaNRun’s system architecture.

3.2 Video-based Ground-truth Generation

Manually annotating ground-truth footsteps based on video
recording at 30 fps is time-consuming. We designed and
deployed an approach based on MediaPipe Pose to provide
automatic ground-truth labeling at decent accuracy, with
only a small amount of manual labeling required.

The landmark model in MediaPipe Pose can detect 33
body landmarks [7]. However, some important running pose
landmarks (e.g., ankle, foot, and heel) tend to overlap from
the side view. Hence, ground-truth videos are collected at
the back (see Figure 1).

Within each frame of the video, MediaPipe Pose gen-
erates Y-coordinates for ankle positions. According to our
observations, the subject’s ankles usually hit a relatively sta-
ble horizontal line when in contact with the treadmill belt.
Therefore, a predetermined threshold for the ankle coordi-
nates would be ideal for determining the start and end of
each step accurately, which identifies both cadence and GCT.

Figure 2 illustrates how different thresholds perform on
the video frames of one example runner. When setting the
threshold, if positioned too high or too low ankles will either
never cross, or the Y-coordinates generated by MediaPipe
Pose becomes unreliable (see the areas shaded in blue and
red in Figure 2a and Figures 2b and 2d).

A 10-second sample video clip from each running ses-
sion is manually labeled, which is then used to adjust the
threshold within the Predetermined Threshold region shown
in Figure 2a. As such, the threshold that minimizes the error
between the manual labels and labels generated by Medi-
aPipe for each running session can be identified (indicated
by the red star in Figure 2a and Figure 2c). The results of this
proposed ground-truth labeling is evaluated in Section 5.1.

4 SYSTEM ARCHITECTURE

There are several challenges in detecting running footsteps
using audio from a smartphone resting on top of the treadmill.
Treadmills are usually in noisy environments such as gyms,
where surrounding runners generate their own noises and
music may be playing. Treadmills are also inherently noisy
machines, making it difficult to discern footsteps accurately
using naive methods, such as detecting peaks in energy. In
addition to ambient noise, the phone may often be placed
in different orientations (see Figure 1) and vibrates on the
treadmill as the person runs, generating even more noise. The
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sound produced by the runner is dependent on their physical
attributes, such as height and weight. Furthermore, running
sounds are also affected by how the user runs (e.g., heel
vs. toe impact running, low speed vs. high speed). Figure 5
shows the variances when different subjects run at differing
speeds. To account for these sources of error and noise, we
propose an LSTM-based method for extracting footsteps
from audio collected from the smartphone, which we detail
next. CaNRun’s full system architecture is shown in Figure 3.

4.1 Preprocessing

We preprocess audio from the smartphone using mean vari-
ance normalization (MVN) before computing the spectro-
gram and converting to frequency domain, as shown in Fig-
ure 5. We see that high and low-frequency noise was common
in the signal due to the mobile phone vibrating against the
treadmill, and the tread friction noise respectively. However,
the mid-frequency bands were relatively clear of high-energy
signals apart from footstep impacts. Additionally, we see that
the footsteps in the middle-frequency bands and the noise
in the low and high-frequency bands have similar levels of
energy. As a result, we found that amplitude-based filtering
such as spectral gating noise reduction often could not dis-
tinguish footsteps from treadmill noises. Hence, we apply
a band-pass filter to reduce high and low-frequency noise,
while retaining the middle frequencies where footsteps are
more apparent.

4.2 Cadence Detection Method

Figure 4 highlights CaNRun’s cadence detection algorithm.
We use a many-to-many bidirectional LSTM deep learning
network to extract footsteps from audio. We leverage an
LSTM because audio is a form of time series data. The input
to the model is an n-second window of the spectrogram, and
the output at each time point is the probability of the user’s
foot being in contact with the treadmill (e.g., a footstep is
occurring), which provides information for both cadence
and GCT. Next, we threshold (binarize) the probabilities and
use a running average to smooth the output time series of
probabilities into binary labels. To obtain the number of steps
within the n-second window, we search for and count peaks
within the time series of binarized labels. The cadence, or
steps per minute (SPM) then results from normalizing the
counted number of steps by the window size (n seconds) and
extrapolating to the minute-scale, as shown in Equation 1.

Cadence(SPM) = counted_steps X %) (1)

The next concern is determining the window size n. Smaller
window sizes have the advantage of immediate feedback for
the runner, at the cost of actual cadence resolution and more
variation in the output. For example, if the chosen window
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starts or ends during the middle of a footstep, the estimated
cadence may contain one extra or one less footstep, which
would significantly affect the estimated cadence if the win-
dow size was small, but have less impact if the window size
is large. However, a larger window size may require a larger
LSTM model to process, which increases latency and com-
putation. To obtain the best of both worlds, we decide to
use a small window size of n = 3 seconds with a 1-second
window shift. However, to minimize the impact of partial
footsteps in any window, we average the cadence estimated
from 10, n = 3 second, windows. In other words, CaNRun’s
estimation of cadence occurs over a longer 10-second period.
In this way, as shown in Figure 4, we can reuse the smaller
LSTM-based extractor for each 3 — second window to reduce
computation, while being robust to artifacts arising from
footsteps being partially cutoff at the start or end of each
window. We decide to average over a 10-second period be-
cause this is the same period of time that the Apple Watch
uses to estimate and report cadence.

4.3 Smartphone Platform

Figure 6 shows the user interface for CaNRun’s smartphone
system. CaNRun samples audio from the microphone at
22.05kHz. We implemented CaNRun on an iPhone 14 Pro
and implemented our LSTM-based footstep extractor (Sec-
tion 4.2) using TensorFlow Lite [4]. For one 3-second clip of
audio, it takes 10.8 ms to preprocessing the audio signal, and
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Figure 6: Smartphone platform with historical and cur-
rent cadence displayed to the end user in real-time.
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Figure 7: MediaPipe labels overlaid manual labels with
accuracy of 99.35 %.

45.1ms for model inference and cadence estimation. Since
we use a 1-second window shift, we update the real-time
cadence once per second using a rolling average across a 10-
second period of windows. In total, CaNRun takes 55.9 ms to
update (e.g., convert to frequency, run LSTM-based extractor,
averaging, etc.) its estimate of the user’s cadence every three
seconds, making it capable of running in real-time.

5 EVALUATION
5.1 Video-based Ground Truth Collection

We evaluate our video-based footstep ground-truth de-
tection pipeline against manual labeling to determine if our
MediaPipe-based solution can be used to accurately and
automatically generate ground truth labels in place of labor-
intensive manual labeling. Figure 7 compares the periods of
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Speed | Subject 1 | Subject 2 | Subject 3 | Subject 4 | Subject 5 | Subject 6 | Subject 7 | Subject 8
(mph) Error Error Error Error Error Error Error Error
5 99.45 % 99.67 % 99.46 % 97.86 % 98.93 % 99.48 % 99.48 % 99.28 %
6 99.74 % 97.10 % 98.54 % 99.74 % 98.47 % 99.22 % 99.12 % 99.83 %
7 99.33% 97.77% 99.72 % 97.77% 98.31% 99.86 % 99.08 % 98.77 %
8 99.20 % 99.45 % 99.86 % 99.80 % 99.48 % 99.35% 98.88 % 99.18 %

Table 1: Average MediaPipe labeling error compared to
manual labeling.
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Figure 8: LSTM output overlaid with MediaPipe labels
and corresponding spectrogram. The LSTM output cor-
respond with the spectrogram peaks, as well as the
MediaPipe ground-truth labels.

Ground Contact

GCT Probability

time where our MediaPipe-based solution detects that the
foot is contacting the ground (ground contact) compared
with manual labeling. Table 1 provides a breakdown for the
error across six subjects at all speeds. Overall, our MediaPipe-
based solution differs from manual labels by, on average, only
0.65 %. As such, we adopt our video-based solution for label-
ing training and testing data to train and evaluate CaNRun’s
cadence estimation method.

5.2 System Performance Evaluation

To evaluate CaNRun, we use the data collected from subjects
1 to 4 (2 male and 2 female) and gathered from subjects 5
to 8 (2 male and 2 female) as the training and testing data,
respectively. As mentioned in Section 3.1, the cadences are
calculated for 5-minute running sessions at 4 different speeds.
We compare CaNRun against the Apple Watch.

Figure 8 shows the CaNRun’s LSTM output from 3-second
audio from one subject, which generates the probability that
the user’s foot is in contact with the treadmill (i.e., GCT)
and highly correlates to the ground-truth generated by the
MediaPipe-based method. The green dashed line indicates
the binarization threshold for cadence estimation (empiri-
cally set at 0.4). Figure 9 shows that the time series of the
estimated cadence for one example running session between
CaNRun, the Apple Watch, and the ground truth match very
closely. This shows CaNRun closely follows the ground truth
and has a comparable performance as Apple Watch.
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Training Data | Testing Data
CaNRun 97.79 % 96.77 %
Apple Watch 97.93 % 98.04 %

Table 2: CaNRun’s average cadence estimation accuracy
on training and testing data.

Figure 10 and Figure 11 show the breakdown in cadence
estimation accuracy over each subject and running speed,
respectively. CaNRun has comparable performance to the
Apple Watch, but does not require the user to wear any-
thing. As shown in Table 2, CaNRun achieves 96.77 % cadence
estimation accuracy on unseen participants, which is com-
parable to the estimation performance of Apple Watch. Note
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that Apple Watch’s cadence detection results are calibrated for
individual users based on their outdoor running history.

In addition, as shown in Figure 8, the output of the LSTM-
based detector is a probability of the GCT before applying
the empirical binarization threshold for cadence estimation.
Though not the primary focus of this paper, the GCT cal-
culated from the LSTM-based detector on the testing data
is 90.5 % accurate, which is high enough to enable future
algorithm design for accurate GCT estimation.

6 DISCUSSION

CaNRun is a first step towards robust non-intrusive mon-
itoring of running form. We plan to explore the following
directions in future work.

1. Larger user study and more equipment variety. Although
our cadence estimation error was comparable to the Apple
Watch, we only studied a small number of participants on
a single type of treadmill. We plan to conduct larger user
studies across multiple treadmills and environments in future
work, as well as possibly implement more advanced audio
filtering systems like AVA [11] [12] to isolate footsteps from
noise more effectively while preserving privacy [10].

2. Detecting other metrics for improving running form. In
this work, we focus on estimating cadence with preliminary
findings for ground contact time (GCT). We plan to further
explore the algorithms for robust GCT detection.

3. Classifying running type. We observed that there are
two distinct types of running on the treadmill, which we
call "push" and "pull", which can significantly impact per-
formance. The former is when the runner pushes off the
treadmill at the end of the step, causing the sound to lag
slightly behind the initial ground contact. Pull running is
when the runner pulls himself forward at the initial impact,
resulting in the sound occurring at the beginning of ground
contact. We plan on classifying these styles in future work.

7 CONCLUSION

We propose CaNRun, a mobile acoustic-based running ca-
dence estimator on a treadmill by using the footstep extrac-
tor based on LSTM. CaNRun is deployed and tested on a
smartphone system to realize real-time cadence detection.
CaNRun achieves an accuracy of 96.8 % without requiring
individual calibration. We also show that CaNRun has a po-
tential ground contact time estimation capability with 90.5 %
accuracy based on preliminary results.
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